641. Infrared Studies of Heterocyclic Compounds. Part III. ${ }^{1}$ 3-Monosubstituted Pyridines.

By A. R. Katritzky, A. R. Hands, and R. A. Jones.

The positions and intensities of eleven characteristic bands are recorded and discussed for twenty-seven 3 -substituted pyridines.

Following our work on 2-1 ${ }^{1}$ and 4 -substituted pyridines, ${ }^{2}$ we now report spectra for some 3 -analogues. Cook and Church ${ }^{3}$ investigated the spectra of 3 -picoline (which has also been studied in detail ${ }^{4}$) and five nicotine derivatives containing a 3 -substituted pyridine ring (as liquid films) and indicated that characteristic bands were at $1605-1585,1587-$ 1568, 1486-1475, 1427-1416, 1383-1377, 1318-1312, 1253-1239, 1196-1180, $1131-\mathrm{ll17}, 1034-1021,810-789$, and $715-712 \mathrm{~cm} .^{-1}$; the fifth of these was stated to be " of variable intensity," but otherwise no indication of intensities was given. Shindo ${ }^{5}$ correlated the spectra of thirteen 3 -substituted pyridines (measured in Nujol, $\mathrm{CS}_{2}, \mathrm{CCl}_{4}$, or chloroform) and found characteristic bands at l202-1182 (vw-s), 1130-1114 (w-m), 1016-1030 (m-s), $820-770(\mathrm{~m}-\mathrm{s})$ and $730-690 \mathrm{~cm} .^{-1}(\mathrm{vs})$. He also indicated that in general pyridines showed two bands between 1630 and $1560 \mathrm{~cm} .^{-1}$ and that, in those 3 -substituted pyridines with electron-donor substituents, the band of lower frequency was the stronger of the pair, but that the reverse was true of 3-pyridines with electron-acceptor substituents.*

In the present work, for reasons already given, ${ }^{6}$ the spectra were all measured for 0.2 M -solutions in chloroform in a 0.117 mm . cell, and apparent extinction coefficients recorded in place of " strong," " weak," etc. Eleven bands were found to be characteristic of the nucleus (see Table); they include all those found by the previous workers, ${ }^{3,5}$ except those obscured by solvent ($1240-1200$ and below $805 \mathrm{~cm} .^{-1}$), those at $1383-1377 \mathrm{~cm}^{-1}$ (apparently assigned to methyl absorption) and $1318-1312 \mathrm{~cm} .^{-1}$. With very few exceptions, all other bands with $\varepsilon_{\Lambda} \geqslant 15$ were found to be characteristic of the substituent; they have already been published ${ }^{6}$ for the methyl and the ethyl esters, the aldehyde, and the methyl ketone: in these seven compounds a total of 99 bands and 27 shoulders have been correlated and no band left unaccounted for.

The $3000 \mathrm{~cm}^{-1}$ Region.-The hydrogen-bonded chloroform CH stretching frequency ${ }^{2}$ occurs (col. 1) at $3000-2940[2980 \pm 15] \dagger \mathrm{cm} .^{-1}$; the intensity is (45-80) [(60 $\left.\left.\pm 13\right)\right] \dagger$ except in the cyano- and nitro-compounds (probably less hydrogen-bonded because of low basicity) and in the ethyl and higher esters (overlapped by substituent absorption).

The $1650-1550 \mathrm{~cm} .^{-1}$ Region.-Two bands occur. The first (col. 2) has a rather constant position at $1608-1584[1595 \pm 5] \mathrm{cm}^{-1}$, but is of much higher intensity with both strong donor substituents [Nos. 1-7, (60-185)] and strong electron acceptor substituents [Nos. 17-27 (65-200)] than with substituents of a more neutral character [Nos. 8-16 (15-35)]. This intensity variation is similar to that in the corresponding band in 2-7 and 4 -substituted pyridine 1 -oxides, ${ }^{8}$ but different from those in the 2 - and 4 -pyridines; ${ }^{1,2}$ this correlates well with the relative ease of electron-donor and -acceptor power of the rings (see discussion in ref. 8).

[^0]

The second band (col. 3) occurs at $1582-1567[1577 \pm 5] \mathrm{cm} .^{-1}$ with intensity (25-75) [(45 $\pm 15)]$ (except in No. 5 where it is overlapped). This band often occurs only as a shoulder on the previous band, and sometimes instead of the two bands only one is observed, usually that at higher frequencies.

The $1500-1400 \mathrm{~cm} .^{-1}$ Region.-Usually two bands are found. One (col. 4) occurs at $1486-1480 \mathrm{~cm} .^{-1}$ with electron donor substituents (Nos. 1-7), at $1479-1477 \mathrm{~cm} .^{-1}$ with electronically neutral substituents (Nos. 8-12), but is lowered to $1472-1465 \mathrm{~cm}^{-1}$ by aryl, halogen, and electron attracting-substituents. The intensity is very high for the amides (145-290) and moderate with other electron-donor and neutral substituents (Nos. $1-3,8-16)(30-95)[(65 \pm 20)]$; the band is weak or absent in compounds with electron-attracting substituents (Nos. 17-27).

Another band (col.5) is at $1428-1414 \mathrm{~cm} .^{-1}$ [1421 $\left.\pm 4\right]$, except for the amino-compounds at $1442 \mathrm{~cm} .^{-1}$. The intensity is ($35-140$) [$\left.(80 \pm 25)\right]$.

The 1200-990 cm. ${ }^{-1}$ Region.-Five bands are found. The first (col. 6) occurs at the edge of the portion of the spectrum obscured by solvent (i.e., $1240-1200 \mathrm{~cm} .^{-1}$) and usually is seen only as a shoulder.

Another band (col. 7) occurs at $1130-1114 \mathrm{~cm} .^{-1}(10-35)\left[1124 \pm 5 \mathrm{~cm}^{-1}(20 \pm 10)\right]$; it is often hidden by, or seen as a shoulder on, substituent absorption.

The third band (col. 8) is absent for No. 17, otherwise it is at $1112-1096 \mathrm{~cm} .^{-1}$ $[1103 \pm 5]$. The intensity is $(10-25)[(20 \pm 5)]$, except for the halogeno-compounds (Nos. 15 and 16) which cause abnormally strong absorption in this region in other series. ${ }^{1,2,7,8}$

A weak band (col. 9) (absent in Nos. 15, 17, and 27) is found at $1047-1040 \mathrm{~cm} .^{-1}$ with electron-donor and most neutral substituents (Nos. 1-12), at $1039-1035 \mathrm{~cm} .^{-1}$ with electron-acceptor substituents (Nos. 18-26), but the frequency is lowered to ca. 1025 $\mathrm{cm} .^{-1}$ with halogeno- and aryl substituents. The intensity is (5-25) [20 ± 5)] except for Nos. 12 and 19 where the band is strongly overlapped by substituent absorption.

The final band in this region (col. 10) occurs at $1029-1021 \mathrm{~cm} .^{-1}[1025 \pm 2]$ except in the amino-, aryl- and halogeno-substituted compounds which all absorb at lower frequencies. The intensity is ($15-140$) [65 ± 35)].

The $900-800 \mathrm{~cm} .^{-1}$ Region. - For a few compounds a band (col. ll) occurs on the edge of the region hidden by solvent absorption below $805 \mathrm{~cm} .^{-1}$.

Assignments.-Comparison with Randle and Whiffen's data ${ }^{9}$ for meta-substituted benzenes suggests the assignments indicated at the head of the Table; the agreement is, however, not as good as for 2 - and 4 -substituted pyridines; ${ }^{1,2}$ the bands at [964 ± 10 (w), 904 ± 13 (var) and $876 \pm 10 \mathrm{~cm} .^{-1}$ (vs)] appear to have no analogues in the 3 -pyridines, and the assignment of the 3 -pyridine band at $c a .1190 \mathrm{~cm} .^{-1}$ is uncertain.

Experimental.-See ref. 2 for sources of specimens, and conditions for measurement of the spectra.

Most of this work was carried out during the tenure (by A. R. K.) of an I.C.I. Research Fellowship.

The Dyson Perrins Laboratory, Oxford University.
The Chemical Laboratory, Cambridge University.
[Received, March 31st, 1958.]
${ }^{\text {• }}$ Randle and Whiffen, Report on Conference on Molecular Spectroscopy, 1954, Inst. Petroleum, Paper No. 12, p. 111.

[^0]: * In this paper, Shindo also discusses the spectra of twelve 2-and twelve 4-monosubstituted pyridines; as far as they go, his correlations are in good agreement with ours (refs. 1 and 2).
 \dagger Arithmetical means and standard deviations are given in square brackets, ε_{A} values in round brackets: see footnote in ref. 2.
 ${ }^{1}$ Part II, Katritzky and Hands, $J ., 1958,2202$.
 ${ }^{2}$ Katritzky and Gardner, J., 1958, 2198.
 ${ }^{3}$ Cook and Church, J. Phys. Chem., 1957, 61, 458.
 ${ }^{4}$ Long, Murfin, Hales, and Kynaston, Trans. Faraday Soc., 1957, 53, 1171 and references therein.
 ${ }^{5}$ Shindo, Pharm. Bull. (Japan), 1957, 5, 472.
 ${ }^{6}$ Katritzky, Monro, Beard, Dearnaley, and Earl, J., 1958, 2182.
 ${ }^{7}$ Katritzky and Hands, $J ., 1958,2195$.
 ${ }^{8}$ Katritzky and Gardner, J., 1958, 2192.

